
MAI ZHENHONG AND ZHAO HONG 609 

IV. Concluding remarks 

In their pioneer experiments, Borrmann & Lehmann 
(1963) obtained agreement between observed and 
calculated fringe spacings within 25% in the high- 
absorption case and 70% in the low-absorption case. 
The reason for the deviation is that in their simple 
theory they considered only the effect of the phase 
relationship of waves upon the fringe spacing, but 
neglected the effect of the absorption and the 
intensities of the waves. In this paper, we have con- 
sidered all factors affecting the spacings of fringes. 
Therefore we have obtained good agreement, within 
14%, between observed and calculated fringe 
spacings in the high- and low-absorption cases. The 
computer simulation patterns also fit the experimental 
patterns very well. Through our theory the BL fringes 
are physically clearer. 

The authors thank Professor Shun Changde for 
helpful discussions, the British Council for financial 
support to MZ and Professor A. R. Lang FRS for 
guiding advice and topographic facilities at the 
University of Bristol. 
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Abstract 

A generalization and extension is given of the two- 
wavelength ratio technique for phase determination 
[e.g. Cascarano, Giacovazzo, Peerdeman & Kroon 
(1982). Acta Cryst. A38, 710-720 and references 
therein]. It is shown that the phase-determining for- 
mula of the ratio technique for acentric reflections 
merely depends on Bijvoet ratios and dispersion terms 
even if there are no restrictions on these dispersion 
terms. The system of equations which forms the basis 
for both the ratio technique and the Bijvoet difference 
method of Singh & Ramaseshan [Acta Cryst. (1968), 
B24, 35-40] (S&R) permits the derivation of a 
relationship between the scale factors of data col- 
lected at different wavelengths for acentric reflections. 
If this relationship is used as scaling scheme, the S&R 
method is algebraically equivalent to the ratio tech- 
nique. For centric reflections the two methods are 
equivalent provided that the same scaling is applied. 

Introduction 

The availability of intense tuneable synchrotron radi- 
ation has renewed interest in multi-wavelength 
methods for phase determination of protein structures 
by means of anomalous X-ray scattering. Two- 

wavelength methods employ either sums (differences) 
or ratios of two intensities, called respectively Bijvoet 
sums (differences) or Bijvoet ratios if the two 
intensities correspond to Friedel eciuivalents (or, in 
general, to reflections which are related by Laue sym- 
metry operations which do not belong to the crystal 
class). 

Singh & Ramaseshan (1968) (S&R) presented an 
algebraic two-wavelength method using Bijvoet sums 
and differences which allows calculation of the struc- 
ture-factor magnitudes of the anomalous scatterers 
and, after solving the heavy-atom structure, the struc- 
ture-factor phases. A slightly modified S&R method 
was used by Klop, Krabbendam & Kroon (1989) 
together with a direct-methods phasing technique 
which does not require the solution of the heavy-atom 
structure. 

Unangst, Miiller, Miiller & Kleinert (1967) pro- 
posed an alternative formalism for phase determina- 
tion when using anomalous-dispersion data which 
are based on Bijvoet ratios. Their results were de- 
rived in a limited form, using an approximation. 
Geometrical constructions of the multi-wavelength 
Bijvoet-ratio procedure for phase determination were 
given by Hosaya (1975). Bartunik (1978) presented 
an exact two-wavelength Bijvoet-ratio method for 
phase determination in which the real and imaginary 
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610 THE TWO-WAVELENGTH TECHNIQUE 

components of the anomalous scattering factor at the 
two wavelengths obey certain conditions and pro- 
vided that the resonant structure is known. His 
method is only applicable in neutron diffrac- 
tion. Cascarano, Giacovazzo, Peerdeman & Kroon 
(1982) have calculated structure-factor amplitudes 
of the anomalous scatterers via the two-wavelength 
ratio method using an approximation. Woolfson 
(1984) treated the two-wavelength mono-anomalous 
case. 

Several authors have stressed the advantages of 
multi-wavelength methods using Bijvoet ratios rather 
than Bijvoet differences (Unangst et al., 1967; 
Bartunik, 1978). These authors pointed out that there 
is no need for scaling of intensities in methods using 
Bijvoet ratios whereas Bijvoet difference methods do 
require scaling. Furthermore, absorption effects are 
thought to be much more severe in the latter than in 
the former because Bijvoet ratios are to a very good 
approximation free of absorption whereas Bijvoet 
sums (differences) are not. Cascarano et al. (1982) 
remark that the S&R method is only valid if the two 
wavelengths are chosen on the high-frequency side 
of the absorption edge. According to Ramaseshan & 
Narayan (1981) valuable information (i.e. the 
absolute values of the radius vectors in the complex 
plane) is ignored by using only Bijvoet ratios. 
Helliwell (1984) concludes that it is too early to say 
which approach will prove to be the most appropriate. 
Apparently there is consent that Bijvoet difference 
methods do not coincide with ratio methods. 

By looking for a connection between the Bijvoet 
difference method and the Bijvoet ratio method, we 
will examine whether or not this consent is justified. 
The Bijvoet difference method of S&R (1968) was 
derived without any approximations or restrictions 
on the dispersion terms and included both the deter- 
mination of the heavy-atom amplitudes and phase 
determination. However, the contributions to the 
ratio method presented in the literature involve 
approximations, restrictions or implicit formulae and 
deal with either amplitude or phase determination. 
In order to compare the Bijvoet ratio method with 
the S&R method it is therefore necessary to formulate 
the ratio method without any approximations or 
restrictions. To this end we will start from the ratio 
method of Cascarano et al. (1982), incorporate phase 
determination into the method, and compare~it with 
the S&R method. 

Definitions 

The definitions of Klop et al. (1989) are used 
throughout, some of which are repeated here for 
convenience. 

I- 
Fo Structure factor for reflection hi at wavelength 

A j, not necessarily on absolute scale. [ F ~ =  
F(h, ,  aj).] 

F~ Complex conjugate of the structure factor for 
reflection -hi  at wavelength Aj, on the same 
scale as F~. [F~ = F * ( - h ,  Aj).] 

F~  Contribution to F~ based on the normal parts 
of the scattering factors of all atoms (including 
anomalously scattering atoms) on absolute 
scale. 

Other quantities are defined in the text. 

The ratio technique 

Define the geometrical structure factor G; by 

N 

Gi = ~," nkTk exp [21rihi. rk] 
k = l  

where " specifies that the summation is restricted to 
the anomalous scatterers, nk is the occupation factor 
of atom k and Tk is its isotropic temperature factor. 
If c 0-1/2 is the scale factor to put ]F0]+ and ]F~] on an 
absolute scale, and f~ and Jj' are the real and 
imaginary parts of the scattering factor of the heavy 
atoms at wavelength Aj, we have, with the assumption 
that the anomalous scatterers are identical, 

c ' /2F+= F ~  +( f~  + i]j')Gi ij - -  ij 
( j =  l , . . . ,  U)  (1) 

= ( z i + f 5 ± i ] ; ' ) c i  
Gi # 0  

where z i - F ~ / G i  and U is the number of 
wavelengths. We use (1) to obtain 

[zi+(f;+if~')[ IF;I .1/= (2) 
z i + ( f j - i f j ' )  = F ~ - ' o  • 

~ 1 / 2  Note that the scale factors c 0 cancel. From (2) it 
follows that the ratio of the distances of the point z 
in the complex plane to the points - ( f j +  ifj') and 
- ( f j - / f j ' )  equals the square root of the Bijvoet ratio 
r o. If rij# 1, (2) is the equation of the circle of 
Apollonius in the complex plane. With z = a + ib, (1) 
is written as 

c o l f ; i  = [ ( a i + f j ) 2 + ( b i  , ,2 2 = + f j )  ]gi (3a, 3b) 

where gi is the magnitude of Gi and Gi # 0. Equation 
(2) is written as 

( a i + f ~ ) 2 + b ~ - 2 s o b i + f 7 2 = 0  (4) 
where 

s o - f j : ( r  o + 1)/(r  0 -  1) (5) 

for r 0 # 1. In a two-wavelength experiment (U = 2) 
two solutions, 

Zi,± = a i , ±  + ibi,± , 

are obtained, corresponding to the points of inter- 
section of the circles of Apollonius for the wave- 
lengths 3.1 and a2. These points determine the line 

2a i ( f [  - f~ )  = 2bi(sn - si2) - (f~,2 _f~2) 

_(/~2_f;2). (6) 
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The expressions for bi at the points of intersection 
are found from (4) and (6) and were denoted by Q± 
in the paper by Cascarano et al. (1982): 

Q±= (vi + w,) /2ui ,  (7) 

where 

u, = [(Af')  2 + ( s i , -  si2) 2] (8a) 
[ rt t2 r r t 2 x  z 

v , = ( J 1  - Y 2  ) ( s n - s , 2 ) + ( A f ' ) 2 ( S , a + S , 2 )  (8b) 

wi = Af'{4si,si2[f~ '2 +f~2 + (A f,)2] 

. ,  ~ ~.~ _~ ~.2, [ f y _  f ~ : _  --*~,SilJ ~ ÷ ,5"i2J1 ) - -  (Af')2] 2 

- 4 (  Af')2f;'2} '/2 (8c) 

and with Af' defined by Af '  =]"1 - f~ .  This quantity 
was denoted by A and erroneously defined as If', -f~l 
in the paper by Cascarano et al. If f~ # f ~  then a~ 
follows from (6) and (7). Iff~ =f~ intersection of the 
line 

2b, = (f;,2 _ f ~ 2 ) / ( s , , -  s,2) 

with the circle (4) (for j = 1 or j = 2) leads to the 
solution for a~. 

Subtraction of the equations (3) yields 

2 = cijaIq/4fj 'b,.± 2 (9) g i,± j = 1 or 

with the Bijvoet difference AIu defined by 

AIu--= F~[ 2-  F~I 2. 

For (pseudo-) centrosymmetrical reflections 
~1/21F~] = c~/2 F~  - Fe,  i.e. r~ i = 1, so (4) is not appli- t.q I 
cable. Let q ~  and q~ff be the phases of FiN and G~ 
respectively. For (pseudo-) centrosymmetrical reflec- 
tions, q ~  = q~n(mod 17") so z is real, i.e. b = 0. Intersec- 
tion of any of the four circles of Apollonius 

[z, + (f~ +/f;')[ F .  
(10) 

Iz, + (f~ + if~)l - Fi2 

with the line b = 0 (i.e. the real axis in the ab plane) 
yie lds  two solutions: z~,± = a~,± with a~,± = T±-f~ ;  T± 
is defined in equation (8) of Cascarano et al. (1982). 
The geometric heavy-atom amplitude g,,± can be 
calculated from (3): 

2 2 t 2 g,.± Ful l (a , .± + ffi) .2 = +f~ ] j = l  or2. (11) 

If the resonant structure is known, the phases ~o~ 
can be calculated and the + ambiguity can be 
resolved. Structure factors FiN are readily obtained 
from the calculated values for a~, b~, g~ and q ~  via 
the identity 

ai + ib, - FiN/G, ,  (12) 

so that 

I F ,  ~ = ( a E + b E ) l / 2 g ,  q~iN=q~in + a r g ( a , + i b i ) .  

The subscripts ( + )  have been omitted. 

Connection with the S&R method 

Expression (9) differs from the Bijvoet difference 
expression for 2 gi.+ [equation (6) of Klop et al. (1989)]. 
The latter expression contains an extra scale factor 
compared with the former. The results of a two- 
wavelength Bijvoet difference procedure are greatly 
influenced if the two sets of data are not on a common 
scale [e.g. Sakamaki, Hosaya & Fukamachi (1980)]. 
In the paper by S&R (1968) the intensities are 
assumed to be on an absolute scale. However, only 
relative scaling (inter-wavelength scaling) is required 
and equation (5) of Klop et al. (1989) can be used 
to eliminate the extra scale factor in the Bijvoet 
difference expression, after which this expression is 
expected to yield the same g value as (9). This can 
be checked by the following calculations. 

Starting from (7) and (9) we have 

2 Ci2 Aii2 p,u,(v~ + wi) (13) 
g"± - 4f~b,,----~ - vi2 _ w,2 

where 

and 

p,=- c,= AI~2/2f~ (14) 

bi.+ = Q_ b , ,_=Q+.  (15) 

The following equation easily follows from (9): 

c,, AI , , / f~ '  = c,2 AI,2/J~; (16) 

this is the same as equation (5) of Klop et al. (1989). 
Next, if (16) is used together with (14) and the 
definition of si, (5), then 

2 f  , c , ,Mi,  2f~ci2Mi2 
Sil :h Si2 - -  2_ 

c .  A l .  c,2 A I~2 

= ( Cil M,,  + c,2 M,2) / p, ( 17 ) 

where M e-= ([F~j[ 2+ [F~12)/2. After some calculation 
vi and w~, defined in (8b) and (8c), can be expressed 
as 

Vi = O i l  p i  ( 1 8 )  

w, = ( 0  2 -  R ,P)  ,/2/ P, (19) 

where P, Qi and Ri are 

P = [ ( A f ' ) 2 - ( f ~ ' 2 - f ~ E ) ] 2 + 4 ( A f ' ) E f ~ ' 2  (20a) 

Qi = (Af ' )2(cnM, + c,2Mi2) 
tt2 tt2 

+ ( f  , - f  2 ) ( c , , M , , - c , 2 M , 2 )  (20b) 

Ri ( C i l M i l  2 2 , 2  = - c i 2 M i 2 )  + p i ( A f ) .  ( 2 0 c )  

These parameters are identical to the S&R parameters 
defined in equation (7) of Klop et al. (1989). Q~ should 
not be confused with Q±. Next, using (17)-(19) and 
(20c), we obtain 

2 2 R , P / p 2 = [ ( A f ' ) 2 + ( s , , - s , 2 ) ' ~ ] P = ' u , P .  (21) l) i - -  W i = 
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and collecting the results we find 
2 tt g,.±=c,,AI, ,14f  , b , . ± = [ Q , ± ( Q 2 - R , P ) ' / 2 ] / P  (22) 

if condition (16) holds. Hence we find equation (6) 
of Klop et al. (1989). We conclude that for acentric 
reflections the solutions for the heavy-atom magni- 
tude g calculated by the Bijvoet ratio method are 
equal to those calculated by the S&R method pro- 
vided that the data used in the S&R expression have 
been brought to a common scale via (16). Further, it 
is not difficult to show that the expressions (6), (7) 
and (15) yield the same a and b values as (9a) and 
(9b) of Klop et al. (1989) in the S&R method if (16) 
is used in the S&R expressions. 

In the S&R method the same expressions can be 
used for both acentric and centric reflections. For the 
algebraically simple case of (pseudo-) centric reflec- 
tions both the ratio expression (11) and the S&R 
expression (6) (Klop et al., 1989) contain two scale 
factors and it can be shown that the same g values 
are obtained in both methods. Furthermore, the same 
values are found for a and b (b = 0). 

Discussion 

In the two-wavelength Bijvoet ratio method proposed 
by Bartunik (1978) the algebraic equations are sim- 
plified by using wavelengths such that f ' ,  = - f ~  and 
f [  = f ~ .  These conditions can be fulfilled with reso- 
nant neutron scattering, but not with resonant X-ray 
scattering, for which f ' < 0  (except for a small 
wavelength range). Bartunik presents a formula (3) 
for the phase difference ~pN-~t-t valid for acentric 
reflections which depends only on relative structure 
factors and on the dispersion terms f '  and f". Drop- 
ping the restrictions imposed on the dispersion terms 
and using (12), we obtain an equation which holds 
for both X-ray and neutron scattering: 

tan (~0~ - ~pn) = b,/a, (23) 

or, by (6), if f~ # f~,  

tan ( ¢ y -  ~p~) = 2b , ( f~ - f~ ) [2b , ( s , , -  s,2) 

- ( f [ z - f ~ 2 ) - ( f ' ~ 2 - f ' 2 2 ) ] - ~ .  (24) 

If the resonant structure is known, the + ambiguity 
is resolved by using the b value of the solution (a, b, g) 
with the g value closest to the one calculated from 
the known resonant structure. The favourable charac- 
teristics of Bartunik's equation (3), as summarized 
by the latter author, also apply to equation (23), which 
has the extra advantage that the choice of wavelengths 
is not dictated by conditions imposed on the disper- 
sion terms. Specifically, it turns out that for acentric 
reflections, even without restrictions on the dispersion 
terms, the phase difference merely depends on Bijvoet 
ratios and dispersion terms and hence is not, or is 
only to a small degree, affected by absorption effects 
or scaling errors. 

If 
rt2 #2 ( f ,  _ f  = )=_( f~2_ f~2 )  (25) 

then 

t a n ( ~ - ~ ) = ( f ~ - f ~ ) / ( s i , - s ~ 2 ) .  (26) 

So if the restriction given in (25) is fulfilled, there is 
no ambituity in the phase difference ~ ~ - ~ ~ because 
(26) is independent of b. This formula was first 
derived by Unangst et al. (1967) using an approxima- 
tion instead of (25). 

If f ' , = - f ~  and f [ = f ~ - f '  then (26) reduces to 

\a/l ,  a i j  
tan (27) 

which is equation (3) of Bartunik 

[Mo -= (IF I + I F 12)121. 

Using the Bijvoet ratio technique we derived an 
expression (9) for the heavy-atom amplitude, valid 
for acentric reflections, which contains only one scale 
factor. Therefore there is no need to bring the two 
data sets to a common scale; in other words, there is 
no need for relative scaling of the data. The corre- 
sponding S&R expression [equation (6) of Klop et 
al. (1989)], however, contains two scale factors, so 
relative scaling is required and if this scaling is done 
via (16) the resulting amplitudes are equal to those 
derived by the Bijvoet ratio technique. We conclude 
that application of the ratio technique to acentric 
reflections implies that relative scaling is performed 
implicitly according to (16). Application of the S&R 
method requires explicit relative scaling, e.g. via (16) 
or by averaging c,/c~2 over a number of reflections 
(see Sakamaki, Hosaya, Tagai, Ohsumi & Satow, 
1984). 

Concluding remarks 

In the present paper a generalization and extension 
of previous contributions to ratio methods has been 
formulated. It was shown that the phase difference 
~o N_ ~pn depends only on Bijvoet ratios and disper- 
sion terms, without conditions imposed on these dis- 
persion terms. The advantages of using Bijvoet ratios 
summarized by Bartunik (1978) apply therefore not 
only to neutron scattering but also to X-ray scattering. 

We have also shown that for acentric reflections 
the same solutions (a, b, g) are found in both the S&R 
method and the ratio technique, if the two-wavelength 
data are brought to a common scale via (16). For 
centric reflections the same holds true without the 
latter condition and the two methods coincide. For 
acentric reflections the two methods coincide if (16) 
is used in the S&R method, in which case the advan- 
tages associated with the use of Bijvoet ratios also 
apply to the S&R method. 

In the light of the established connection between 
the ratio technique and the S&R method, the view of 
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Cascarano et al. (1982) that the S&R results only 
apply to an experiment carried out with both 
wavelengths at the high-frequency side of the absorp- 
tion edge is erroneous. 

For acentric reflections the S&R method is more 
flexible than the ratio technique since it offers the 
possibility of using relative scaling schemes other 
than (16). 
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Abstract 

Changes in shape of 1D profiles of small-single- 
crystal Bragg reflections have been examined in terms 
of the shapes of the components which, convoluted 
together, generate the profile. In most practical cases, 
operational features require truncation of the angular 
scan range of measurement and the conventional 
linear formula for scan range, to = a + b tan 0, is then 
not strictly valid. A more appropriate relationship 
involves a combination of root mean square (RMS) 
and linear (LIN) forms, 

to = [(p,)2 + (q ,  tan 0)2] 1/2 + (p"+ q" tan 0) 

where p' is associated with the leading and trailing 
edges of the distribution of the combined 0-invariant 
components and p" with its plateau width while q' is 
associated with the leading and trailing edges of the 
distribution of the wavelength component and q" with 
the separation of its outer peaks if there are more 
than one. For operational purposes, this relationship 
can be substituted with adequate precision by to = 
[c2+(d tan 0)2] 1/2, but the parameters c and d do 
not then have a simple relationship to the 0-invariant 
and 0-variant components. Use of a conventional 
linear formula when a RMS one is the relevant one 
can mean that, in the lower 0 range, the estimate of 
integrated intensity will be too high and, in the higher 
0 range, it will be too low, so that, with increasing 
0, a positive then a negative systematic error is intro- 
duced and not merely a negative error as the conven- 
tional interpretation of truncation holds. The con- 
clusions of the present analysis are tested against 
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experimental data where the conventional treatment 
for truncation failed [Eisenstein & Hirshfeld (1983). 
Acta Cryst. B39, 61-75]. For the estimation of 
integrated intensity, and hence of structure factors, 
which are consistent over the operational range of 0, 
a RMS formula for the scan range is advisable. 

Introduction 

Diffractometry of a small single crystal involves 
measurement of a large number of Bragg reflections 
distributed over a wide range of scattering angle, 0. 
To ensure that these reflections are placed on a 
mutually consistent and therefore directly compar- 
able basis, the measurements for each reflection 
should be carried out over an exactly equivalent 
region of diffraction space, determined by the angular 
ranges of the respective contributing components 
(Mathieson & Stevenson, 1985). If one wishes to 
ensure that this condition is truly satisfied, then 2D 
measurements in Ato, A20 space have the advantage 
that the appropriate region can be defined readily. 

Until position-sensitive detectors with an authentic 
resolution of (say) 50 txm are commonly available to 
facilitate 2D data collection of individual Bragg 
reflections in diffraction space, it is likely that the 
majority of crystal structure studies will continue to 
be effected using 1D measurement of the counter 
profile varying to. As one moves from reflection to 
reflection, this involves adjusting the scan range [and 
the detector aperture, except in the case of the o.,/20 
scan mode (Mathieson, 1983)] in some systematic 
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